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This paper concerns the extension of the multicomponent gas-kinetic BGK-type
scheme to chemical reactive flow calculations. In the kinetic model, each component
satisfies its individual gas-kinetic Bhatnagar–Gross–Krook (BGK) equation, and the
equilibrium states of both components are coupled in space and time due to the
momentum and energy exchange in the course of particle collisions. At the same
time, according to the chemical reaction rule, one component can be changed into
another component with a release of energy. The reactant and product may have
different ratios of specific heats. The BGK scheme basically uses the collisional
Boltzmann model to mimic the numerical dissipation necessary for shock capturing.
The numerical dissipation is controlled by the particle collision pseudo-timeτ . In the
resolved viscous calculations, there is a direct relation between the physical viscosity
coefficient and the particle collision time. Many numerical test cases presented in
this paper validate the gas-kinetic approach in the application of multicomponent
reactive flows. c© 2000 Academic Press
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1. INTRODUCTION

The development of numerical methods for multimaterial flows has attracted much atten-
tion in the last few years [11, 12, 21, 28]. One of the main applications of these methods is to
chemical reactive flow [3, 13, 22, 25]. Research in reactive flows, especially those involving
detonation waves, was pioneered by Zeldovich, von Neumann, and Doering, who developed
the well-known ZND model. The ZND model consists of a nonreactive shock followed by
a reaction zone. Since the model was proposed, much theoretical and numerical work on
this problem has been done. Numerical calculation of the ZND detonation was pioneered
by Fickett and Wood [14], who solved the one-dimensional equations using the method of
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characteristics in conjunction with a shock fitting method. Longitudinal instability waves
were accurately simulated. Later, Taki and Fujiwara applied van Leer’s upwind method to
calculate two-dimensional traveling detonation waves [31, 33]. They solved the Euler equa-
tions coupled with two species equations. The chemical reaction was simulated by a two-step
finite-rate model and the transverse instabilities around shock front were clearly observed.
It was pointed out by Colellaet al. in [7] that if the numerical resolution in the detonative
shock front is not enough, a nonphysical solution can easily be generated. As an example,
the solution may have the wrong shock speed. To avoid a nonphysical solution, Engquist and
Sjögreen [9] used a high-order TVD/ENO numerical method combined with a Runge–Kutta
time marching scheme to solve the combustion problem with special treatment in the shock
region. Around the same time, Kailasanathet al. [20] extended the flux-corrected transport
(FCT) algorithm for detonations. In the early 1990s, Bourliouxet al. combined the PPM
scheme with conservative front tracking and adaptive mesh refinement in the study of det-
onative waves [3–5]. They computed the spatial–temporal structure of unstable detonation
in one and two spatial dimensions. Quirk [27] addressed deficiency of the Godunov-type
upwind schemes in solving complex flow problems and suggested a hybrid scheme to sim-
ulate the galloping phenomenon in one- and two-dimensional detonations. Recently, Short
and co-workers extensively studied the nonlinear stability of a pulsating detonation wave
driven by a three-step chain-branching reaction [29, 30]. Lindstr¨om [22] analyzed the poor
convergence of the inviscid Euler solutions in the study of detonative waves and suggested
solving the compressible Navier–Stokes equations directly. Most recently, Hwanget al.
[17] pointed out that not only is resolution of the reaction zone important, but also the
size of the computational domain is critical in capturing correct detonative solutions. So
far, it is well recognized that a good scheme for reactive flow must be able to capture the
correct shock speed, resolve wave structures in the multidimensional case, and determine
the correct period of the possible unsteady oscillation in the wave.

Ever since the gas-kinetic scheme was proposed for the compressible flow simulations,
it has attracted much attention in the CFD community due to its robustness and accuracy.
The gas-kinetic schemes are usually catalogued as one group of flux vector splitting (FVS)
schemes for hyperbolic equations [15, 32]. Actually, this is not completely true. For ex-
ample, in the construction of numerical fluxes, the FVS scheme requires homogeneity of
the governing equations, such as the Steger–Warming method for the Euler equations. But
the kinetic method can be directly applied to nonhomogeneity equations, such as the shal-
low water equations and hyperbolic–elliptic equations [34, 36]. It can even be applied to
the magnetohydrodynamic equations directly [8, 37], where an exact Riemann solution
is unknown. Besides its generality, the gas-kinetic scheme distinguishes itself from other
schemes by its robustness, especially for high-speed flows with shock and expansion waves.
Like many other FVS schemes, the weakness of the collisionless-type kinetic methods is
its overdiffusivity. It needs a much refined mesh to get an accurate Navier–Stokes solution.
The reason for the overdiffusivity is the underlying free transport mechanism in the kinetic
method. To improve the accuracy of the scheme, the inclusion of particle or pseudo-particle
collisions becomes necessary. This leads directly to the development of the BGK scheme,
where the particle collisions are included in the gas evolution process. Mathematically,
from the BGK equation, the macroscopic Navier–Stokes equations can be derived [6]. In
other words, for well-resolved flow simulations, the BGK flow solver and the Navier–
Stokes solver yield same solutions. Actually, in this situation, any standard central differ-
ence scheme is adequate without inclusion of any upwinding or Riemann solver concept.
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FIG. 1. The initial condition of the macroscopic flow variables used for the construction of initial gas distri-
bution functions (10) and (11). The time dependent gas distributions evolved from the above initial data at a cell
interface are presented in Eqs. (18) and (19) for different species.

However, for unresolved flow calculations, such as in inviscid flow or viscous flow with fine
structure too small to be resolved by the cell size, numerical dissipation must be included.
As pointed out by MacCormack [24], dissipation is the key element in numerical method-
ology and respect for it is paramount. The BGK scheme includes dissipation mainly by the
control of the pseudo-particle collision timeτ and its intrinsic collisional model. We believe
that the Godunov scheme with additional viscous and heat conduction terms, gives the same
result as the BGK flow solver. As presented in the current paper, the BGK scheme is based
on the explicit flux function obtained from the generalized initial condition, shown in Fig. 1,
and the BGK governing equation. For the Godunov method, even if a generalized Riemann
solver is available [1], the viscous terms must be implemented in the solver separately by
central differencing. For the multicomponent flow, the BGK-type scheme follows the time
evolution of individual species, which makes it easy to implement the physical interaction
between different species.

In this paper, we extend the multicomponent BGK solver [35] to higher dimensions,
and we construct a scheme with the inclusion of reactive terms. The paper is organized as
follows. Section 2 introduces the governing equations for chemical reactive flows in the 2D
case and describes the numerical method. Section 3 discusses the numerical experiments,
which include nonreactive shock bubble interaction and ZND wave calculations in both
1D and 2D cases. We also show a new example where the reactant and product could have
different ratios of specific heats. Different from the previous approach [19], the current
method follows the evolution of each species individually.

2. GAS-KINETIC METHOD

The focus of this section is the presentation of a kinetic scheme to solve the following
reacting compressible Euler equations in the 2-D case,

ρ1

ρ2

ρU

ρV

ρE


t

+


ρ1U

ρ2U

ρU2+ P

ρU V

U (ρE + P)


x

+


ρ1V

ρ2V

ρU V

ρV2+ P

V(ρE + P)


y

=


−K (T)ρ1

K (T)ρ1

0
0

K (T)Q0ρ1

, (1)
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whereρ1 is the density of the reactant,ρ2 is the density of the product,ρ = ρ1+ ρ2 is
the total density, andρE is the total energy which includes both kinetic and thermal ones;
i.e., ρE = 1

2ρ(U
2+ V2)+ P1/(γ1− 1)+ P2/(γ2− 1). HereU , V are the average flow

velocities in thex andy directions, respectively. Each component has its specific heat ratios
γ1 andγ2. P = P1+ P2 is the total pressure, andQ0 is the amount of heat released per unit
mass by reaction. The equation of state can be expressed asP1 = ρ1RT andP2 = ρ2RT.
K (T) is the chemical reactive rate, which is a function of temperature. The specific form
of K (T) will be given in the numerical examples section.

The above reactive flow equations will be solved in two steps. In the first step, the
nonreactive gas evolution parts are solved using the multimaterial gas-kinetic method. In
the second step, the source terms on the right-hand side of Eq. (1) are included in the update
of flow variables inside each cell.

2.1. 2-D Multicomponent BGK Scheme

2.1.1. Gas-kinetic governing equations.The focus of this section is a multicomponent
BGK scheme in two dimensions. For the two-dimensional problem, the governing equation
for the time evolution of each component is the BGK model,

f (1)t + u f (1)x + v f (1)y =
g(1) − f (1)

τ
,

(2)

f (2)t + u f (2)x + v f (2)y =
g(2) − f (2)

τ
,

where f (1) and f (2) are particle distribution functions for component 1 and 2 gases, andg(1)

andg(2) are the corresponding equilibrium states whichf (1) and f (2) approach. In the above
equations,τ is the particle collision time, which determines the speed of a nonequilibrium
state approaching an equilibrium one. In the BGK scheme,τ can be regarded as particle col-
lision pseudo-time for the unresolved flow calculation; the additional dissipation provided
through the control of the collision time generates artificial dissipation necessary for shock
capturing. The detailed expression ofτ is given in the section on numerical examples. The
relations between the distribution functions and the macroscopic variables are∫

f (1)φ(1)α d4(1) + f (2)φ(2)α d4(2) = W = (ρ1, ρ2, ρU, ρV, ρE)T , (3)

where

d4(1) = du dv dξ1, d4(2) = du dv dξ2,

φ(1)α =
(

1, 0, u, v,
1

2

(
u2+ v2+ ξ2

1

))T

φ(2)α =
(

0, 1, u, v,
1

2

(
u2+ v2+ ξ2

2

))T

,

are the moments for individual mass, total momentum, and total energy densities. Here,
ξ2

1 = ξ2
1,1+ ξ2

1,2+ · · · + ξ2
1,K1

andξ2
2 = ξ2

2,1+ ξ2
2,2+ · · · + ξ2

2,K2
. The integration elements

aredξ1 = dξ1,1 dξ1,2 . . .dξ1,K1 anddξ2 = dξ2,1 dξ2,2 . . .dξ2,K2. K1 andK2 are the degrees
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of freedom of the internal variablesξ1 andξ2, which are related to the specific heat ratios
γ1 andγ2. For the two-dimensional flow, we have

K1 = (5− 3γ1)/(γ1− 1)+ 1 and K2 = (5− 3γ2)/(γ2− 1)+ 1.

The compatibility condition for the two-component gas mixture is∫ (
g(1) − f (1)

)
φ(1)α d4(1) + (g(2) − f (2)

)
φ(2)α d4(2) = 0, α = 1, 2, 3, 4, 5. (4)

The equilibrium Maxwellian distributionsg(1) andg(2) are generally defined as

g(1) = ρ1(λ1/π)
K1+2

2 e−λ1((u−U1)
2+(v−V1)

2+ξ2
1),

g(2) = ρ2(λ2/π)
K2+2

2 e−λ2((u−U2)
2+(v−V2)

2+ξ2
2),

whereλ1 andλ2 are functions of temperature. Due to the momentum and energy exchange
in particle collisions, the equilibrium statesg(1) and g(2) are assumed to have the same
velocity and temperature at any point in space and time. Therefore, from the given initial
macroscopic variables at any point in space and time,

W(1) =
∫

g(1)φ(1)α d4(1) = (ρ1, ρ1U1, ρ1V1, ρ1E1)
T ,

W(2) =
∫

g(2)φ(2)α d4(2) = (ρ2, ρ2U2, ρ2V2, ρ2E2)
T ,

we can get the corresponding equilibrium values

W(1) =
(
ρ1, ρ1U, ρ1V,

1

2
ρ1

(
U2+ V2+ K1+ 2

2λ

))T

,

(5)

W(2) =
(
ρ2, ρ2U, ρ2V,

1

2
ρ2

(
U2+ V2+ K2+ 2

2λ

))T

,

where the equilibrium valuesU , V , andλ can be obtained from the mass, momentum, and
energy conservation,

ρ = ρ1+ ρ2,

ρ1U1+ ρ2U2 = ρU,

ρ1V1+ ρ2V2 = ρV,

ρ1E1+ ρ2E2 = ρ(U2+ V2)

2
+ (K + 2)ρ

4λ
.

(6)

With the definition of “averaged” value of internal degrees of freedomK ,

K = ρ1K1+ ρ2K2

ρ
,

and the corresponding specific heat ratioγ ,

γ = K + 4

K + 2
,
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the valuesU , V , andλ can be obtained from Eq. (6) explicitly,

U = ρ1U1+ ρ2U2

ρ
,

V = ρ1V1+ ρ2V2

ρ
,

and

λ = 1

4

(K + 2)ρ

ρ1E1+ ρ2E2− 1
2ρ(U

2+ V2)
.

As a result, the equilibrium states can be expressed as

g(1) = ρ1(λ/π)
K1+2

2 e−λ((u−U )2+(v−V)2+ξ2
1),

g(2) = ρ2(λ/π)
K2+2

2 e−λ((u−U )2+(v−V)2+ξ2
2).

The governing equations (2) are closely related to the viscous governing equations, and the
dissipative coefficients are proportional to the collision timeτ [34].

2.1.2. Multicomponent gas-kinetic scheme.Numerically, the Boltzmann equations (2)
are solved using a splitting method. For example, in thex direction, we solve

f (1)t + u f (1)x =
g(1) − f (1)

τ
,

f (2)t + u f (2)x =
g(2) − f (2)

τ
,

and in they direction,

f (1)t + v f (1)y =
g(1) − f (1)

τ
,

f (2)t + v f (2)y =
g(2) − f (2)

τ
.

In each fractional step, the compatibility condition (4) is still satisfied.
For the BGK model, in thex direction the integral solution off at a cell interfacexi+1/2

and timet is

f (1)
(
xi+1/2, t, u, v, ξ1

) = 1

τ

∫ t

0
g(1)(x′, t ′, u, v, ξ1)e

−(t−t ′)/τ dt′

+ e−t/τ f (1)0

(
xi+1/2− ut

)
(7)

for component 1 and

f (2)
(
xi+1/2, t, u, v, ξ2

) = 1

τ

∫ t

0
g(2)(x′, t ′, u, v, ξ2)e

−(t−t ′)/τ dt′

+ e−t/τ f (2)0

(
xi+1/2− ut

)
(8)

for component 2, wherexi+1/2 is the location of the cell interface andx′ = xi+1/2− u(t − t ′)
is the particle trajectory. There are four unknowns in Eq. (7) and Eq. (8). Two of them are
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initial gas distribution functionsf (1)0 and f (2)0 at the beginning of each time stept = 0, and
the others areg(1) andg(2) in both space and time locally around(xi+1/2, t = 0).

Numerically, at the beginning of each time stept = 0, we have the macroscopic flow
distributions inside each celli ,

Wi = (ρ1, ρ2, ρU, ρV, ρE)Ti .

From the discretized initial data, we can apply the standard van Leer limiterL(·, ·) to
interpolate the conservative variablesWi and get the reconstructed initial data

W̄i (x) = Wi + L(si+, si−)(x − xi ), for x ∈ [xi−1/2, xi+1/2
]
, (9)

where(W̄i (xi−1/2), W̄i (xi+1/2)) are the reconstructed point-wise values at the cell interfaces
xi−1/2 andxi+1/2 in cell i .

To simplify the notation, in the followingxi+1/2 = 0 is assumed. With the interpolated
macroscopic flow distributions̄Wi , the initial distribution functionsf (1)0 and f (2)0 in Eq. (7)
and Eq. (8) can be constructed as

f (1)0 =
{(

1+ a(1)l x
)
g(1)l , x< 0,(

1+ a(1)r x
)
g(1)r , x> 0,

(10)

for component 1 and

f (2)0 =
{(

1+ a(2)l x
)
g(2)l , x< 0,(

1+ a(2)r x
)
g(2)r , x> 0,

(11)

for component 2. The corresponding macroscopic variables for each component around
the cell interface are shown in Fig. 1. The equilibrium states in Eq. (7) and Eq. (8) around
(x = 0, t = 0) are assumed to be

g(1) = (1+ (1− H(x))ā(1)l x + H(x)ā(1)r x + Ā(1)t
)
g(1)0 , (12)

and

g(2) = (1+ (1− H(x))ā(2)l x + H(x)ā(2)r x + Ā(2)t
)
g(2)0 , (13)

where H(x) is the Heaviside function.g(1)0 andg(2)0 are the initial equilibrium states located
at the cell interface,

g(1)0 = ρ1,0(λ0/π)
K1+2

2 e−λ0((u−U0)
2+(v−V0)

2+ξ2
1),

g(2)0 = ρ2,0(λ0/π)
K2+2

2 e−λ0((u−U0)
2+(v−V0)

2+ξ2
2).

(14)

The parametersa(1,2)l ,r , ā(1,2)l ,r , and Ā(1,2) are from the Taylor expansion of the equilibrium
states and have the forms

a(1,2)l = a(1,2)l ,1 + a(1,2)l ,2 u+ a(1,2)l ,3 v + a(1,2)l ,4

u2+ v2+ ξ2
(1,2)

2
,

a(1,2)r = a(1,2)r,1 + a(1,2)r,2 u+ a(1,2)r,3 v + a(1,2)r,4

u2+ v2+ ξ2
(1,2)

2
,
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ā(1,2)l = ā(1,2)l ,1 + ā(1,2)l ,2 u+ ā(1,2)l ,3 v + ā(1,2)l ,4

u2+ v2+ ξ2
(1,2)

2
,

ā(1,2)r = ā(1,2)r,1 + ā(1,2)r,2 u+ ā(1,2)r,3 v + ā(1,2)r,4

u2+ v2+ ξ2
(1,2)

2
,

Ā(1,2) = Ā(1,2)1 + Ā(1,2)2 u+ Ā(1,2)3 v + Ā(1,2)4

u2+ v2+ ξ2
(1,2)

2
.

All coefficientsa(1,2)l ,1 ,a(1,2)l ,2 , . . . , Ā(1,2)4 are local constants. To determine all these unknowns,
the BGK scheme is summarized as follows.

The equilibrium Maxwellian distribution functions located on the left side of the cell
interfacexi+1/2 for components 1 and 2 are

g(1)l = ρ1,l (λl/π)
K1+2

2 e−λl ((u−Ul )
2+(v−Vl )

2+ξ2
1),

and

g(2)l = ρ2,l (λl/π)
K2+2

2 e−λl ((u−Ul )
2+(v−Vl )

2+ξ2
2). (15)

At the locationx = 0, the relations (3) and (4) require

W̄i
(
xi+1/2

) ≡


ρ̄1,i

ρ̄2,i

(ρU )i

(ρV)i

(ρE)i


xi+1/2

=
∫

g(1)l φ1
α d4(1) + g(2)l φ2

α d4(2) =


ρ1,l

ρ2,l

(ρU )l

(ρV)l

(ρE)l

,

and

W̄i+1
(
xi+1/2

) ≡


ρ̄1,i+1

ρ̄2,i+1

(ρU )i+1

(ρV)i+1

(ρE)i+1


xi+1/2

=
∫

g(1)r φ(1)α d4(1) + g(2)r φ(2)α d4(2) =


ρ1,r

ρ2,r

(ρU )r
(ρV)r
(ρE)r

,

from which we have


ρ1,l

ρ2,l

Ul

Vl

λl

 =


ρ̄1,i

ρ̄2,i

Ū i

V̄ i

(K1+ 2)ρ̄1,i + (K2+ 2)ρ̄2,i

4
(
(ρE)i − 1

2 ρ̄ i (Ū2
i + V̄2

i )
)


xi+1/2

.
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Similarly,


ρ1,r

ρ2,r

Ur

Vr

λr

 =


ρ̄1,i+1

ρ̄2,i+1

Ū i+1

V̄ i+1

(K1+ 2)ρ̄1,i+1+ (K2+ 2)ρ̄2,i+1

4
(
(ρE)i+1− 1

2 ρ̄ i+1(Ū2
i+1+V̄2

i+1)
)


xi+1/2

.

Therefore,g(1)l , g(2)l , g(1)r , andg(2)r are totally determined.
Sinceg(1) andg(2) have the same temperature and velocity at any point in space and time,

as shown in Eq. (5), the parameters(a(1,2)l ,1 ,a(1,2)l ,2 ,a(1,2)l ,3 ,a(1,2)l ,4 ) are not totally independent.

Sincea(1,2)l ,2 ,a(1,2)l ,3 , anda(1,2)l ,4 depend only on derivatives ofU0, V0, andλ0, the requirement
of common velocity and temperature in space and time gives

al ,2 ≡ a(1)l ,2 = a(2)l ,2 , al ,3 ≡ a(1)l ,3 = a(2)l ,3 , and al ,4 ≡ a(1)l ,4 = a(2)l ,4 .

This is also true among the parametersa(1)r,2,a
(2)
r,2, . . . ,a

(1)
r,2,a

(2)
r,2 on the right-hand side of a

cell interface. Therefore, for each celli , we have

W̄i
(
xi+1/2

)− W̄i (xi )

xi+1/2− xi
≡


ω1

ω2

ω3

ω4

ω5


=
∫ (

a(1)l ,1 +al ,2u+al ,3v+al ,4
u2+ v2+ ξ2

1

2

)
g(1)l φ(1)α d4(1)

+
(

a(2)l ,1 +al ,2u+al ,3v+al ,4
u2+ v2+ ξ2

2

2

)
g(2)l φ(2)α d4(2). (16)

The above five equations uniquely determine the five unknowns(a(1)l ,1 ,a
(2)
l ,1 ,al ,2,al ,3,al ,4)

and the solutions are the following: Define

51 = ω3−Ul (ω1+ ω2),

52 = ω4− Vl (ω1+ ω2),

53 = ω5−
U2

l + V2
l + K1+2

2λl

2ω1
− U2

l + V2
l + K2 + 2

2λl

2ω2
.

The solutions of Eq. (16) are

al ,4 = 8λ2
l (53−Ul51− Vl52)

(K1+ 2)ρ1,l + (K2+ 2)ρ2,l
,

al ,3 = 2λl

ρ1,l + ρ2,l

(
52− (ρ1,l + ρ2,l )Vl

2λl
al ,4

)
,

al ,2 = 2λl

ρ1,l + ρ2,l

(
51− (ρ1,l + ρ2,l )Ul

2λl
al ,4

)
,
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a(2)l ,1 =
1

ρ2,l

(
ω2− ρ2,l (Ul al ,2+ Vl al ,3)− ρ2

(
U2

l + V2
l

2
+ K2+ 2

4λl

)
al ,4

)
,

a(1)l ,1 =
1

ρ1,l

(
ω1− ρ1,l (Ul al ,2+ Vl al ,3)− ρ1

(
U2

l + V2
l

2
+ K1+ 2

4λl

)
al ,4

)
.

With the same method, all terms ina(1,2)r terms can be obtained.
By taking the limit of(t → 0) in Eq. (7) and Eq. (8), applying the compatibility condition

at (x = xi+1/2, t = 0), and using Eqs. (10) and (11), we get

(ρ1,0, ρ2,0, ρ0U0, ρ0V0, ρ0E0)
T

≡
∫

g(1)0 φ(1)α d4(1) + g(2)0 φ(2)α d4(2)

= lim
t→0

e−t/τ
∫

f (1)0

(
xi+1/2− ut

)
φ(1) d4(1) + f (2)0

(
xi+1/2− ut

)
φ(2) d4(2)

=
∫ (

H(u)g(1)l + (1− H(u))g(1)r

)
φ(1)α d4(1) + (H(u)g(2)l + (1− H(u))g(2)r

)
φ(2)α d4(2).

(17)

The right-hand side of the above equation can be evaluated explicitly usingg(1,2)l ,r in Eq. (15).
Therefore,ρ1,0, ρ2,0, λ0, U0, andV0 in Eq. (14) can be obtained by solving Eq. (17). As a
result,g(1)0 andg(2)0 are determined. Then, connecting the macroscopic variables

W0 = (ρ1,0, ρ2,0, ρ0U0, ρ0V0, ρ0E0)
T

at the cell interface with the cell-centered values in Eq. (9) on both sides, we get the slopes
for the macroscopic variables,

W0− W̄i (xi )

xi+1/2− xi
, and

W̄i+1(xi+1)−W0

xi+1− xi+1/2
,

from which ā(1)l andā(1)l in Eq. (12) andā(2)r andā(2)r in Eq. (13) can be determined using
the same techniques for solving Eq. (16). At this point, there are only two unknownsĀ(1,2)

left for the time evolution parts of the gas distribution functions in Eq. (12) and Eq. (13).
Substituting Eq. (10), Eq. (11), Eq. (12), and Eq. (13) into the integral solutions Eq. (7) and

Eq. (8), we get

f (1)
(
xi+1/2, t, u, v, ξ1

) = (1− e−t/τ
)
g(1)0 + τ

(
t/τ − 1+ e−t/τ

)
Ā(1)g(1)0

+ (τ(−1+ e−t/τ
)+ te−t/τ

)(
ā(1)l H(u)+ ā(1)r (1− H(u))

)
ug(1)0

+ e−t/τ
((

1− uta(1)l

)
H(u)g(1)l +

(
1− uta(1)r

)
(1− H(u))g(1)r

)
,

(18)

and

f (2)
(
xi+1/2, t, u, v, ξ2

) = (1− e−t/τ
)
g(2)0 + τ

(
t/τ − 1+ e−t/τ

)
Ā(2)g(2)0

+ (τ(−1+ e−t/τ
)+ te−t/τ

)(
ā(2)l H[u] + ā(2)r (1− H(u))

)
ug(2)0

+ e−t/τ
((

1− uta(2)l

)
H(u)g(2)l +

(
1− uta(2)r

)
(1− H(u))g(2)r

)
.

(19)
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To evaluate the unknowns̄A(1,2) in the above two equations, we can use the compatibility
condition at the cell interfacexi+1/2 over the whole CFL time step1t ,

∫ 1t

0

∫ (
g(1) − f (1)

)
φ(1)α d4(1) dt + (g(2) − f (2)

)
φ(2)α d4(2) dt = 0,

from which we can get

∫
g(1)0 Ā(1)φ(1)α d4(1) + g(2)0 Ā(2)φ(2)α d4(2)

=
∫ (

Ā(1)1 + Ā2u+ Ā3v + Ā4
u2+ v2+ ξ2

1

2

)
g(1)0 φ(1)α d4(1)

+
(

Ā(2)1 + Ā2u+ Ā3v + Ā4
u2+ v2+ ξ2

2

2

)
g(2)0 φ(2)α d4(2)

= 1

γ0

∫ [
γ1g(1)0 + γ2u

(
ā(1)l H(u)+ ā(1)r (1−H(u))

)
g(1)0 + γ3

(
H(u)g(1)l + (1−H(u))g(1)r

)
+ γ4u

(
a(1)l H(u)g(1)l + a(1)r (1− H(u))g(1)r

)]
φ(1)α d4(1) + [γ1g(2)0 + γ2u

(
ā(2)l H(u)

+ ā(2)r (1− H(u))
)
g(2)0 + γ3

(
H(u)g(2)l + (1− H(u))g(2)r

)+ γ4u
(
a(2)l H(u)g(2)l

+a(2)r (1− H(u))g(2)r

)]
φ(2)α d4(2), (20)

where

γ0 = 1t − τ(1− e−1t/τ
)
,

γ1 = −
(
1− e−1t/τ

)
,

γ2 = −1t + 2τ
(
1− e−1t/τ

)−1te−1t/τ ,

γ3 =
(
1− e−1t/τ

)
,

and

γ4 = −τ
(
1− e−1t/τ

)+1te−1t/τ .

The right-hand side of Eq. (20) is known; therefore all parameters inĀ(1,2) terms can be
obtained explicitly.

Finally the time-dependent numerical fluxes for component 1 and component 2 gases
across a cell interface can be obtained by taking the moments of the individual gas distri-
bution functionsf (1) and f (2) in Eq. (18) and Eq. (19) separately, which are


Fρ1

0

Fρ1U1

Fρ1V1

Fρ1E1


i+1/2

=
∫

uφ(1)α f (1)
(
xi+1/2, t, u, v, ξ1

)
d4(1),
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and 
0
Fρ2

Fρ2U2

Fρ2V2

Fρ2E2


i+1/2

=
∫

uφ(2)α f (2)
(
xi+1/2, t, u, v, ξ2

)
d4(2).

Integrating the above time-dependent flux functions in a whole time step1t , we can get
the total mass, momentum, and energy transports for each component, from which the flow
variables in each cell can be updated.

In comparison with traditional central schemes and popular Riemann solvers, the eval-
uation of the gas distributions in Eqs. (18) and (19) is relatively expensive. However, both
the viscous effect and the coupling of the spatial and temporal gas evolution are included
in these distribution functions. Therefore, in a certain sense, the BGK method gives a more
accurate representation of the flow motion under a more generalized initial condition, i.e.,
the inclusion of slopes at the left- and right-hand sides of a cell interface; see Fig. 1. If only
inviscid flux functions are required, the distribution functions can be simplified to

f (1)
(
xi+1/2, t, u, v, ξ1

) = (1− e−t/τ
)
g(1)0 + e−t/τ

(
H(u)g(1)l + (1− H(u))g(1)r

)
,

and

f (2)
(
xi+1/2, t, u, v, ξ1

) = (1− e−t/τ
)
g(2)0 + e−t/τ

(
H(u)g(2)l + (1− H(u))g(2)r

)
.

This simplified formulation has been applied to the MHD simulation [37].

2.2. Reaction Step and Flow Update

After obtaining the flux functions across a cell interface, we need to solve an ODE to
account for the source term, i.e.,Wt = S. More specifically, inside each cell we need to
solve 

(ρ1)t = −K (T)ρ1,

(ρ2)t = K (T)ρ1,

(ρE)t = K Q0ρ1.

(21)

In the current study, one step forward-Euler method is used to solve the above equations.
In summary, the update of the flow variables inside cell(i, j ) from stepn to n+ 1 is

through the formulation

Wn+1
i, j = Wn

i, j +
1

1V

(
1y
∫ 1t

0

(
Fi−1/2, j − Fi+1/2, j

)
dt

+1x
∫ 1t

0

(
Gi, j−1/2− Gi, j+1/2

)
dt

)
+1t Si, j ,

whereSi, j is the corresponding source term in cell(i, j ), F andG are numerical fluxes across
cell interfaces by solving the multicomponent BGK equations, and1V is the area of the
cell (i, j ). We have also tried a second-order Runge–Kutta time stepping method to update
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the source term. It is observed that there is basically no difference in the simulation results
between using first- and second-order time stepping schemes for the test cases presented in
the next section.

3. NUMERICAL EXAMPLES

In this section, we test the multicomponent BGK scheme for both nonreactive and reactive
flows. For the viscous calculations, the collision timeτ in the BGK scheme presented in
the last section is set to be

τ = µ/P,

whereµ is the dynamical viscosity coefficient andP is the total local pressure. For the
viscous flow,µ is a fixed number. In the mesh-refinement study of the viscous flow cal-
culation, the simulation results can be convergent only after the physical viscosity takes a
dominant role and the physical structure can be well resolved by the mesh size. The con-
vergence study of the BGK scheme for the Rayleigh–Taylor case is presented in [19]. The
kinetic BGK method is actually a mesoscopic model rather than a microscopic model for
the flow description. The collision timeτ cannot take the real particle collision time, such
as 10−9 s for the molecular collisions in the air, because it is impossible to get such a refined
mesh size and time step to resolve individual particle collision. In the BGK scheme for
the Navier–Stokes solution, the collision time is solely determined from the macroscopic
viscosity coefficient.

For the inviscid flow calculations, the collision time is defined as

τ = 0.051t + |Pl − Pr |
Pl + Pr

1t,

where1t is the CFL time step, andPl andPr are the corresponding pressure in the states
gl andgr of the initial gas distribution functionf0. With the above definition, the numerical
dissipation will be reduced along with the mesh refinement. In the smooth flow region,
the above expression gives about 20 collisions inside each time step. In other words, the
magnitude of corresponding numerical diffusion is about 1/10 of that in the kinetic flux
vector splitting (KFVS) scheme [23, 26, 34]. In the discontinuous region, the collision time
will be close to the time step in order to provide enough dissipation to construct a numerical
discontinuity jump. Whatever the collision time, numerical dissipation always exist in the
BGK scheme and is consistent with the Navier–Stokes dissipative terms. In other words,
the BGK scheme gives an approximate solution under the generalized initial condition
(Fig. 1) for the viscous governing equations, and the viscosity coefficient is controlled by
the particle collision pseudo-time. Starting from the Godunov method, it is equivalent to
construct a generalized Riemann solution for the viscous governing equations. Also, the
current approach is more robust than the previous “single component” kinetic method for
the reactive flows [19]. The detail comparison is given in [18].

For the chemical reactive flow, if the flow structure is not well resolved by the mesh
size, the current BGK scheme cannot get grid-independent solutions. It is true for any other
shock capturing scheme applied to the reactive flows. As realized by Lindstorm [22], to
obtain grid-independent solutions, a large amount of physical viscosity must be added in
the flow simulations. The BGK scheme does it through the inclusion of large collision time,
such as the case (5) in the reactive flow calculation section.
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FIG. 2. Physical domain for shock–bubble interaction.

3.1. Nonreactive Multimaterial Flow Calculations

In this section, we show two cases of shock–bubble interactions. The main differences
between these two cases are the specific heat ratios and the initial gas densities inside the
bubble with respect to the density of the outside air. The density difference yields different
flow patterns around the material interface after its interaction with the shock.

Case (1): A Ms =1.22 shock wave in air hits a helium cylindrical bubble.We examine
the interaction of aMs = 1.22 planar shock wave, moving in the air, with a cylindrical helium
bubble. Experimental data can be found in [16] and numerical solutions using adaptive mesh
refinement have been reported in [28]. Recently, a ghost fluid method has been applied to
this case too [11]. A schematic description of the computational setup is shown in Fig. 2,
where reflection boundary conditions are used on the upper and lower boundaries. The initial
flow distribution is determined from the standard shock relation with the given strength of
the incident shock wave. The bubble is assumed to be in both thermal and mechanical
equilibrium with the surrounding air. The nondimensionalized initial conditions are

W = (ρ = 1,U = 0,V = 0, P = 1, γ = 1.4) preshock air

W = (ρ = 1.3764,U = −0.394,V = 0, P = 1.5698, γ = 1.4) postshock air

W = (ρ = 0.1358,U = 0,V = 0, P = 1, γ = 1.67) helium.

The nondimensional cell size used in the computation is1x = 1y = 0.25.
To identify weak flow features which are often lost within contour plots, we present a

number of numerical Schlieren images. These pictures depict the magnitude of the gradient
of the density field

|1ρ| =
√(

∂ρ

∂x

)2

+
(
∂ρ

∂y

)2

, (22)

and hence they may be viewed as idealized images; the darker the image, the larger the
gradient. The density derivatives are computed using straightforward central-differencing.
The following nonlinear shading functionφ is used to accentuate weak flow features [28],

φ = exp

(
−k
|1ρ|
|1ρ|max

)
, (23)

wherek is a constant which takes the value 10 for helium and 60 for air. For the Refrigerant
22 (R22) simulation in the next test case, we use 1 for heavy fluid and 80 for air.
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FIG. 4. The density profiles along the centerline for the shock-Helium interaction case at timet = 125.0.
(a) Density of air, (b) density of Helium, and (c) total density.

Figure 3 shows snapshots of numerical Schlieren-type images at nondimensional times
t = 0.0 andt = 125.0. Before the shock hits the bubble, wiggles usually appear around the
bubble because the numerical scheme cannot precisely keep the sharp material interface.
The wiggles spread in all directions. When they reach the solid wall, they bounce back. But
all these noises have a very small magnitude. After the shock hits the bubble, the original
shock wave separates into a reflected and a transmitted shock wave. A complex pattern of
discontinuities has formed around the top and bottom of the bubble. Figure 4 shows the
density distributions around the central line at timet = 125.0. There are approximately
10 points around the material interface, which is much wider than those obtained from
schemes with special treatment at the material interfaces [11, 21]. In other words, the
kinetic scheme always has an intrinsic dissipative term, and it is impossible to keep a very
sharp interface. A similar phenomenon takes place in the 1D case [1]. Since helium has
a lower density than air, any small perturbation at the material interface can be amplified
to form the interface instability. This instability at the material interface is closely related
to the Richtmyer–Meshkov instability. In comparison with the result in [11], the current
scheme could capture the unstable interface structure automatically, and the result here is
qualitatively consistent with both the experiment and that from the mesh-refinement study
[28]. It is a common practice that many schemes with special treatments at the material
interface could easily remove the interface instability. So, it is an interesting problem to
further study the shock–bubble interaction case and to understand the dynamics of any
special numerical treatment on the interface stability. In our calculations, the stable and
unstable interfaces are captured automatically.
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FIG. 3. Numerical Schlieren images of the interaction between aMs = 1.22 shock wave in the air and a
helium cylindrical bubble. The shock is moving from right to left. The second image describes the fields of the
density gradient distribution at timet = 125.0, where the red corresponds to one material and the blue to another
one.

FIG. 5. Numerical Schlieren images of the interaction between aMs = 1.22 shock wave and a R22 cylindrical
bubble. The second image describes the fields of the density gradient distribution at timet = 150.0, where the red
color represents one material and the blue color another one.
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Case (2): A Ms= 1.22 shock wave hits a R22 cylindrical bubble.With the same scheme,
we investigate the interaction of aMs = 1.22 planar shock wave moving in the air impinging
upon a R22 cylindrical bubble. The main difference between this case and the previous one
is that the density of the bubble here is much heavier than the density of air. The initial data
are

W = (ρ = 1,U = 0,V = 0, P = 1, γ = 1.4) preshock air

W = (ρ = 1.3764,U = −0.394,V = 0, P = 1.5698, γ = 1.4) postshock air

W = (ρ = 3.1538,U = 0,V = 0, P = 1, γ = 1.249) R22.

In the numerical experiment we use1x = 1y = 0.25. Figure 5 shows two snapshots of
numerical Schlieren-type images at nondimensional timest = 0.0 andt = 150.0. Figure 6
presents the density distributions along the symmetric line. Due to the higher density in
the bubble region, the material interface in this case is basically stable. Again, this result is
qualitatively consistent with our physical understanding.

3.2. Reactive Flow Calculations

The study of detonation waves has been undertaken theoretically and computationally for
over a century. The successful theory of Zel’dovich, von Neumann, and Doering has come

FIG. 6. The density profiles along the centerline for the shock–R22 interaction case at timet = 150.0.
(a) Density of air, (b) density of R22, and (c) total density.
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to be a standard model. The ZND solution for the reacting compressing Euler equations is
described in [13]. It consists of a nonreactive shock followed by a reaction zone; both the
shock and the reaction zone travel at a constant speedD. Given the specific heat ratioγ
and the heat releaseQ0, there is a minimum shock speed, the so-called Chapman–Jouguet
value,DCJ, above which the ZND solution can be constructed.

The parameter that relates the shock speedD of a given detonation wave to the CJ velocity
DCJ is the overdrive factorf , which is defined as

f ≡
(

D

DCJ

)2

. (24)

The value off is one of the factors that determine the stability of the detonative front.
In the following test cases, we only consider reactive flows with two species, i.e., a reactant

and a product. The reactant is converted to the product by a one-step irreversible reactive
rule governed by Arrhenius kinetics. The factorK (T), which depends on the temperature,
is given by

K (T) = K0Tαe−E+/T ,

whereK0 is a positive constant andE+ is the activation energy. In the current paper, we
assume thatα = 0 and the gas constantR is normalized to unity. Therefore, the above
temperatureT is determined byT = P/ρ.

One important parameter in the numerical calculation of ZND solution is the half-reaction
length L1/2, which is defined as the distance for half-completion of the reactant starting
from the shock front. Usually the reaction prefactorK0 is selected so that the half-reaction
length is unity. From the Arrhenius formula, the half-reaction length is defined as

L1/2 =
∫ 1/2

1

D −U

K0Z exp(−E+/T)
d Z, (25)

whereD is the speed of the shock, andU is the postshock flow speed.
In the output of numerical results, the mass fractionZ is defined as

Z = ρ1

ρ1+ ρ2
.

Case (1): 1-D stable ZND detonation:γ = 1.2, Q0= 50, E+ = 50.0, f= 1.8. This test
case is from [3]. The preshock state is normalized toP0 = ρ0 = 1 and velocityU0 = V0 = 0,
and the postshock can be obtained using the Chapman–Jouguet condition. The prefactorK0

is chosen to beK0 = 145.68913 so that the length of the half-reaction zoneL1/2 is unity.
This case corresponds to the stable ZND profile. The results with 10, 20, and 40 points/L1/2

are shown in Figs. 7 and 8.

Case (2): 1-D unstable detonation:γ = 1.2, Q0= 50, E+ = 50, f = 1.6. To obtain
a high-quality simulation result for the unstable overdriven detonation, a high-resolution
solution is usually required to resolve the instability. At the same time, the correct capturing
of oscillatory period requires a large computational domain. As pointed out in [17], for a
particular computation, one may be tempted to keep only a few points behind the shock,
with the reasoning that the information behind the shock either never catches up with or
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FIG. 7. Mesh refinement study of the pressure history at the shock front for the stable detonation wave, where
f = 1.8, γ = 1.2, Q0 = E+ = 50, andL1/2 = 1.0 (CFL= 0.5).

FIG. 8. Numerical solutions (solid lines) of densityρ, velocity U, pressure P and mass fraction Z, where
f = 1.8, γ = 1.2, Q0 = E+ = 50, L1/2 = 1.0, and 10 points/L1/2 (CFL= 0.5). The dash lines are the exact
solutions.
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does not affect the shock during the computation. However, if too small a computational
domain behind the shock is specified, the points at the edge of and outside the computational
domain cease to be updated after some time, leading to corruption of the data in that region.
TheU + c waves emanating from an inappropriate boundary condition eventually catch up
with the shock itself and alter the shock properties erroneously. The analysis in [17] shows
that if one expects the numerical results at timet to be correct, the computational domain
L andt must satisfy the inequality

t <
L

U + c− D
+ L

D
, (26)

whereU is the speed of the postshock flow, andc is the sound speed. For the current test,
L should satisfy

L ≥ 1.88t.

This classical unstable detonation wave was first studied by Fickett and Wood [14]. An
important physical quality for unstable detonation is the pressure history at the precursor
shock in the oscillatory ZND wave as a function of time. For a stable ZND wave, this
shock pressure history should exhibit small fluctuations about the known precursor shock
value and decay as time evolves. In the case of unstable detonations, the shock front pres-
sure history makes larger excursions from the ZND value. For the caseγ = 1.2, q0 = 50,
E+ = 50, and overdrivef = 1.6, according to Erpenbeck [10] this ZND profile is a regular
periodic pulsating detonation with a maximum shock pressure given by 101.1± 0.2 while
the unperturbed ZND shock pressure is 67.3.

In the current study, the density and pressure are normalized to unity after the shock. Since
Q0 = 50, γ = 1.2, the CJ speed becomesDCJ = 6.80947, and the prefactor is chosen to be
K0 = 230.75 to get a unit half-reaction length. The postshock state can be determined by the
Chapman–Jouguet condition with the given shock speed. Due to the “start-up” numerical
incompatibility, there is a large initial shock pressure up to 114 at timet equal to 8; see
Fig. 9. Aftert > 15, the motion of the shock front becomes periodic.

In this test, we observe that at least 20 points/L1/2 are needed for a correct unstable
ZND solution. In Figs. 9 and 10 we show the numerical results with 20 points/L1/2 and
40 points/L1/2, respectively. At the same time, the result with 80 points/L1/2 is given as a
reference. In Table I, the data of local maximum and minimum pressure as a function of
time are listed.

Case (3): Weak shock wave hitting the reactant.To validate the multicomponent BGK
scheme, we design the following 1D case to simulate the chemical reaction in which the
reactant and product have different specific heat ratiosγ . The initial condition is

WL = (ρL ,UL , PL , γL) = (2.667, 1.479, 4.500, 1.4) postshock air

WM = (ρM ,UM , PM , γM) = (1.0, 0.0, 1.0, 1.4) preshock air

WR = (ρR,UR, PR, γR) = (0.287, 0.0, 1.0, 1.2) (reactant).

This is a case of a weak shock wave withM = 2.0 hitting the reactant. We use the Arrhenius
form for the reaction rate withE+ = Q0 = 50 andK0 = 600.0. The numerical cell size is
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FIG. 9. Local maximum pressure variation as a function of time for the overdriven detonation, wheref = 1.6,
γ = 1.2, Q0 = E+ = 50, andL1/2 = 1.0. Solid line, 80 points/L1/2, and dash-dot line, 20 points/L1/2 (CFL= 0.5).

FIG. 10. Local maximum pressure variation as a function of time for the overdriven detonation, wheref = 1.6,
γ = 1.2, Q0 = E+ = 50, andL1/2 = 1.0. Solid line, 80 points/L1/2, dash-dot line, 40 points/L1/2 (CFL= 0.5).
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TABLE I

Maximum and Minimum Pressure vs Time for f = 1.6 and 80/L1/2

Time Maximum Time Minimum

7.3513 114.1553 11.8038 60.1576
15.9353 85.0627 18.9221 56.7383
23.3201 98.1318 26.3057 56.7478
30.7833 98.3344 33.6993 56.8976
38.1373 97.8645 41.1103 56.7854
45.6102 98.0387 48.6158 56.5972
53.1075 98.8378 56.0587 56.8738
60.5059 98.1242 63.4607 56.9737
67.9318 97.3600 70.8918 56.6064
75.4233 98.6184 78.3885 56.6841
82.8773 98.7023 85.8014 57.0227
90.2201 97.3901 93.2212 56.7298
97.6928 98.2211

1x = 1/2000. Figure 11 shows the numerical results at timet = 0.20. Since the shock is too
weak to construct a ZND wave, the solution is the same as the shock hits the nonreactive two-
component flow interface. There is a transmitted shock moving forward and a rarefaction
wave moving backward.

FIG. 11. Weak shock wave (M = 2.0) in the air (γ = 1.4) hits the reactant gas (γ = 1.2). The cell size is
1x = 1/2000. The reaction hasE+ = Q0 = 50, andK0 = 600.0 (CFL= 0.5).
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FIG. 12. Strong shock wave (M = 8.00) in the air (γ = 1.4) hits the reactant gas (γ = 1.2). The cell size is
1x = 1/2000. The reaction hasE+ = Q0 = 50.0, andK0 = 600.0 (CFL= 0.5).

Case (4): Strong shock wave hitting the reactant.We increase the strength of the shock
in Case (3) up toM = 8.0. The initial condition is

WL = (ρL ,UL , PL , γL) = (5.565, 7.765, 74.50, 1.4) postshock air

WM = (ρM ,UM , PM , γM) = (1.0, 0.0, 1.0, 1.4) preshock air

WR = (ρR,UR, PR, γR) = (0.287, 0.0, 1.0, 1.2) (reactant).

Figure 12 shows the numerical results at timet = 0.05. From the figure, we observe that
after the shock hits the reactant, a ZND solution is obtained.

Case (5): Viscous reactive flow.This case is from [22]. The initial data is a one-
dimensional ZND profile in thex direction. The ZND wave connects the left stateρl =
1.731379,Ul = 3.015113,Vl = 0, ρl El = 130.4736 by a Chapman–Jouguet detonation
with the right stateρr = 1,Ur = 0,VR = 0, ρr Er = 15. If no transverse gradient is present
in the initial data, the numerical scheme will preserve the one-dimensional ZND profile.
Thus, a periodic perturbation is imposed in they direction in the initial ZND profile, where
the initial dataW(x, y, 0) is set toWZND(x +1xNINT( 0.05

1x cos(4πy))), where NINT(z)
is the nearest integer toz.

The current test hasQ0 = E+ = 50,γ = 1.2. The reaction rateK0 is set to be 104. The
coefficient of dynamical viscosityµ is set to 10−4. With the above choice of parameters,
the half-reaction lengthL1/2 of the inviscid one-dimensional Chapman–Jouguet detonation
wave is equal to 0.0285. In our computation,1x = 1y = 1

800 is used. Therefore, there are
about 23 points/L1/2.



FIG. 13. Sequence of eight snapshots of density distributions starting from timet = 0 with a time increment
of 1

16
, whereQ0 = E+ = 50, γ = 1.2,1x = 1y = 1

800
, and 23 points/L1/2. Shock moves from left to right.

FIG. 14. Sequence of 10 snapshots of pressure distributions starting from timet = 35
96

with a time increment
of 1

96
, whereQ0 = E+ = 50, γ = 1.2,1x = 1y = 1

800
, and 23 points/L1/2. Shock moves from left to right.
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FIG. 15. Sequence of 10 snapshots of temperature distributions starting from timet = 35
96

with a time increment
of 1

96
, whereQ0 = E+ = 50, γ = 1.2,1x = 1y = 1

800
, and 23 points/L1/2. Shock moves from left to right.

Based on the analysis in [17], to obtain an accurate solution it is sufficient to use a
computational domainx ∈ [0, 1.2]. At the left and the right boundary, we prescribe the left
and right state of the initial traveling wave solution. At the lower and upper boundaries,
periodic boundary conditions are used.

Figure 13 shows a sequence of snapshots of the density distributions starting from the
time t = 0.0. Figure 14 is the snapshot of pressure at later times when the shock front has
a regular periodic oscillating profile. The first picture is taken att = 13

80, which is just after
the collision of two triple points. This figure clearly shows the formation of a Mach stem.
In the next few snapshots, the movement of triple points along the transverse shock front is
clearly captured. A high-pressure spot develops at the location of triple-point intersection.
Figure 15 shows the snapshots of the temperature variations. More figures, such as the mass
fraction and vorticity, are included in [18].

4. CONCLUSION

In this paper, we have successfully extended the BGK-type gas-kinetic scheme to mul-
tidimensional reactive flows. Since each component of the flow is captured individually,
mass conservation is preserved for each component in nonreactive multimaterial flow cal-
culations. For reactive flows, the mass exchange between different components and the
energy release have been implemented in the current kinetic method. Many numerical test
cases validate the current approach in the description of multimaterial and reactive flows.
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For example, the unstable and stable material interfaces are captured automatically in the
shock–bubble interaction cases.

The success of the kinetic method for the compressible fluid simulation is due to its dis-
sipative mechanism. In the region with smooth flow, the dissipation in the kinetic method is
consistent with the Navier–Stokes dissipative term, and the viscosity coefficient is controlled
by the collision time. In the unresolved discontinuous region, the BGK scheme still solves
the viscous governing equations under the generalized initial condition shown in Fig. 1. We
believe that the Godunov method can achieve the same goal once the generalized Riemann
solution and explicit viscous fluxes are both implemented in the flow solver. In comparison
with Riemann solvers, the advantage of kinetic approaches is probably in their flexibility in
the implementation of physics and straightforward construction of numerical fluxes. Further
investigation to evaluate and compare the Godunov method and the gas-kinetic schemes is
warranted.
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