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This paper concerns the extension of the multicomponent gas-kinetic BGK-type
scheme to chemical reactive flow calculations. In the kinetic model, each component
satisfies its individual gas-kinetic Bhatnagar—Gross—Krook (BGK) equation, and the
equilibrium states of both components are coupled in space and time due to the
momentum and energy exchange in the course of particle collisions. At the same
time, according to the chemical reaction rule, one component can be changed into
another component with a release of energy. The reactant and product may have
different ratios of specific heats. The BGK scheme basically uses the collisional
Boltzmann model to mimic the numerical dissipation necessary for shock capturing.
The numerical dissipation is controlled by the particle collision pseudo-tirirethe
resolved viscous calculations, there is a direct relation between the physical viscosity
coefficient and the particle collision time. Many numerical test cases presented in
this paper validate the gas-kinetic approach in the application of multicomponent
reactive flows. © 2000 Academic Press
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1. INTRODUCTION

The development of numerical methods for multimaterial flows has attracted much at
tion in the last few years [11, 12, 21, 28]. One of the main applications of these methods
chemical reactive flow [3, 13, 22, 25]. Research in reactive flows, especially those involv
detonation waves, was pioneered by Zeldovich, von Neumann, and Doering, who devel
the well-known ZND model. The ZND model consists of a nonreactive shock followed
a reaction zone. Since the model was proposed, much theoretical and numerical wol
this problem has been done. Numerical calculation of the ZND detonation was pione:
by Fickett and Wood [14], who solved the one-dimensional equations using the metho
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characteristics in conjunction with a shock fitting method. Longitudinal instability wav
were accurately simulated. Later, Taki and Fujiwara applied van Leer’s upwind metho
calculate two-dimensional traveling detonation waves [31, 33]. They solved the Euler ec
tions coupled with two species equations. The chemical reaction was simulated by a two-
finite-rate model and the transverse instabilities around shock front were clearly obser
It was pointed out by Colellat al.in [7] that if the numerical resolution in the detonative
shock front is not enough, a nonphysical solution can easily be generated. As an exar
the solution may have the wrong shock speed. To avoid a nonphysical solution, Engquis
Sjogreen [9] used a high-order TVD/ENO numerical method combined with a Runge—KLu
time marching scheme to solve the combustion problem with special treatment in the st
region. Around the same time, Kailasanattal.[20] extended the flux-corrected transport
(FCT) algorithm for detonations. In the early 1990s, Bourli@tal. combined the PPM
scheme with conservative front tracking and adaptive mesh refinement in the study of
onative waves [3-5]. They computed the spatial-temporal structure of unstable deton:
in one and two spatial dimensions. Quirk [27] addressed deficiency of the Godunov-t
upwind schemes in solving complex flow problems and suggested a hybrid scheme to
ulate the galloping phenomenon in one- and two-dimensional detonations. Recently, S
and co-workers extensively studied the nonlinear stability of a pulsating detonation w
driven by a three-step chain-branching reaction [29, 30]. Liods{22] analyzed the poor
convergence of the inviscid Euler solutions in the study of detonative waves and sugge
solving the compressible Navier—Stokes equations directly. Most recently, Hetaalg
[17] pointed out that not only is resolution of the reaction zone important, but also |
size of the computational domain is critical in capturing correct detonative solutions.
far, it is well recognized that a good scheme for reactive flow must be able to capture
correct shock speed, resolve wave structures in the multidimensional case, and detel
the correct period of the possible unsteady oscillation in the wave.

Ever since the gas-kinetic scheme was proposed for the compressible flow simulati
it has attracted much attention in the CFD community due to its robustness and accul
The gas-kinetic schemes are usually catalogued as one group of flux vector splitting (F
schemes for hyperbolic equations [15, 32]. Actually, this is not completely true. For ¢
ample, in the construction of numerical fluxes, the FVS scheme requires homogeneit
the governing equations, such as the Steger—Warming method for the Euler equations
the kinetic method can be directly applied to nonhomogeneity equations, such as the :
low water equations and hyperbolic—elliptic equations [34, 36]. It can even be appliec
the magnetohydrodynamic equations directly [8, 37], where an exact Riemann solu
is unknown. Besides its generality, the gas-kinetic scheme distinguishes itself from o
schemes by its robustness, especially for high-speed flows with shock and expansion w
Like many other FVS schemes, the weakness of the collisionless-type kinetic methoc
its overdiffusivity. It needs a much refined mesh to get an accurate Navier—Stokes solus
The reason for the overdiffusivity is the underlying free transport mechanism in the kine
method. To improve the accuracy of the scheme, the inclusion of particle or pseudo-par
collisions becomes necessary. This leads directly to the development of the BGK sche
where the patrticle collisions are included in the gas evolution process. Mathematic:
from the BGK equation, the macroscopic Navier—Stokes equations can be derived [6
other words, for well-resolved flow simulations, the BGK flow solver and the Navie
Stokes solver yield same solutions. Actually, in this situation, any standard central dif
ence scheme is adequate without inclusion of any upwinding or Riemann solver conc
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FIG. 1. The initial condition of the macroscopic flow variables used for the construction of initial gas dist
bution functions (10) and (11). The time dependent gas distributions evolved from the above initial data at ¢
interface are presented in Egs. (18) and (19) for different species.

However, for unresolved flow calculations, such as in inviscid flow or viscous flow with fil
structure too small to be resolved by the cell size, numerical dissipation must be inclu
As pointed out by MacCormack [24], dissipation is the key element in numerical meth
ology and respect for it is paramount. The BGK scheme includes dissipation mainly by
control of the pseudo-particle collision timeand its intrinsic collisional model. We believe
that the Godunov scheme with additional viscous and heat conduction terms, gives the
result as the BGK flow solver. As presented in the current paper, the BGK scheme is b
on the explicit flux function obtained from the generalized initial condition, shown in Fig.
and the BGK governing equation. For the Godunov method, even if a generalized Rien
solver is available [1], the viscous terms must be implemented in the solver separatel
central differencing. For the multicomponent flow, the BGK-type scheme follows the tir
evolution of individual species, which makes it easy to implement the physical interact
between different species.

In this paper, we extend the multicomponent BGK solver [35] to higher dimensiol
and we construct a scheme with the inclusion of reactive terms. The paper is organize
follows. Section 2 introduces the governing equations for chemical reactive flows in the
case and describes the numerical method. Section 3 discusses the numerical experir
which include nonreactive shock bubble interaction and ZND wave calculations in b
1D and 2D cases. We also show a new example where the reactant and product coulc
different ratios of specific heats. Different from the previous approach [19], the curr
method follows the evolution of each species individually.

2. GAS-KINETIC METHOD

The focus of this section is the presentation of a kinetic scheme to solve the follow
reacting compressible Euler equations in the 2-D case,

p1 pY pV —K(T)p1

P2 p2U p2V K(T)p

pU | +| pU2+P + pUV = 0 : 1)
pV pUV pVZ+ P 0

pE U((pE + P) V(pE + P) K(T)Qop1

t X y
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where p; is the density of the reactan, is the density of the produch = p1 + p2 is
the total density, andE is the total energy which includes both kinetic and thermal one
i.e, pE=3pU2+ V2 +P/(1— 1) + Po/(y2— 1). HereU, V are the average flow
velocities in thex andy directions, respectively. Each component has its specific heat rat
y1 andy,. P = P; + Psis the total pressure, an@ is the amount of heat released per uni
mass by reaction. The equation of state can be expresded-a®:RT andP, = poRT.

K (T) is the chemical reactive rate, which is a function of temperature. The specific fo
of K(T) will be given in the numerical examples section.

The above reactive flow equations will be solved in two steps. In the first step, -
nonreactive gas evolution parts are solved using the multimaterial gas-kinetic methoc
the second step, the source terms on the right-hand side of Eq. (1) are included in the u|
of flow variables inside each cell.

2.1. 2-D Multicomponent BGK Scheme

2.1.1. Gas-kinetic governing equationsl he focus of this section is a multicomponent
BGK scheme in two dimensions. For the two-dimensional problem, the governing equa
for the time evolution of each component is the BGK model,

g — fO
fP +ufd 4 ofP =2
‘ 2

g2 — f@

@ +uf® +of@ =2,
t X y T

wheref® and f @ are particle distribution functions for component 1 and 2 gasesy@hd
andg® are the corresponding equilibrium states whi¢h and f @ approach. In the above
equationsg is the particle collision time, which determines the speed of a nonequilibriu
state approaching an equilibrium one. In the BGK schangan be regarded as particle col-
lision pseudo-time for the unresolved flow calculation; the additional dissipation provid
through the control of the collision time generates artificial dissipation necessary for sh
capturing. The detailed expressionzois given in the section on numerical examples. The
relations between the distribution functions and the macroscopic variables are

/ fPpPda® + f@g@ dE® =W = (p1, p2, pU, pV, pE)", (©)
where

dE® =dudvdg;, dE? =dudvds,

1 T
e <1, 0,u,v, é(u2 +v?+ Ef))

1 T
P = <o, 1,u,v, é(u2 + v2+§22)> ,

are the moments for individual mass, total momentum, and total energy densities. H
E2=E2 4 &0, + - + & andgZ = 2, + &5, + - - - + E2,. The integration elements
aredé; = d&p1dé1 ... dEp k, anddér = dép 1 dés ... déz k,. K1 andK; are the degrees
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of freedom of the internal variablés andé&,, which are related to the specific heat ratios
y1 andy,. For the two-dimensional flow, we have

Ki=5-3y)/(n—1+1 and Ky=5-3y)/(2—D+1

The compatibility condition for the two-component gas mixture is
/@m—fmmmdy9+@®—f®W®d$aza «=12345 (4

The equilibrium Maxwellian distributiong® andg® are generally defined as

g(l) — pl(xl/n)¥e—ll((U—U1)2+(v—V1)2+512)

Ko+2
9? = pa(hs /n.)zTe—?»z((U—Uz)2+(U—V2)2+§22),
wherei; anda; are functions of temperature. Due to the momentum and energy excha
in particle collisions, the equilibrium statgs” andg® are assumed to have the same

velocity and temperature at any point in space and time. Therefore, from the given in
macroscopic variables at any point in space and time,

w® = /9(1)¢él) dg® = (p1, p1U1, p1Vi, mED)T,

w®@ = /9(2)¢§2)d5(2) = (p2, p2U2, p2Va, p2E2)T,

we can get the corresponding equilibrium values

1 Ki+2\\"
w® = (/01, o1U, p1V, —,01(U2+V2+ —)) ,

2 2\
T )
1 K
w® = (/)2, p2U, p2V, EPZ(U2+V2+ 22:_ )) ’

where the equilibrium valudd, V, andx can be obtained from the mass, momentum, ar
energy conservation,

p = p1+ p2
p1U1 + p2Uz = pU,
p1V1 + p2Vo = pV, (6)
p(UZ+V?) (K+2)p
E E, = .
P1E1+ p2E2 > + 2

With the definition of “averaged” value of internal degrees of freedom

_ p1K1 + 02Ky
p b

K

and the corresponding specific heat ratio
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the valuedJ, V, andi can be obtained from Eq. (6) explicitly,

U ]
U:pl 1+ 02 2’
)
V V.
Vzpl 1+ 02 2’
0
and
1 (K+2)p

T ApErt pEr - 2p(UZ VD)
As a result, the equilibrium states can be expressed as
g® = pl()h/n,)%e—k((ufuer(v—V)eréf)’
g? = pz(k/n)%efk((ufU)er(va)erEzz).

The governing equations (2) are closely related to the viscous governing equations, an
dissipative coefficients are proportional to the collision tim@&4].

2.1.2. Multicomponent gas-kinetic schemBlumerically, the Boltzmann equations (2)
are solved using a splitting method. For example, inxlagrection, we solve

@ _ £
O 4 uf® = g9 f ,
T
@ _ 2
@ 4 uf® = 9 f ’
T
and in they direction,
o _fO
1 1 g
f[()+vfy():71 ,
@ _ £
ft(z) + vfiz) _g-r f .
T

In each fractional step, the compatibility condition (4) is still satisfied.
For the BGK model, in the direction the integral solution of at a cell interface 1,2
and timet is

1 t ’
@ (Xi+l/27 t,u, v, El) = — / 9(1)(x/, t', u, v, %-l)e*(tft )T gt
T Jo
+ eV £ (X112 — ut) (7)
for component 1 and
1/t ,
f(2) (Xi+l/27 t,u, v, 52) [ / g(Z)(X/’ t,, u, v, %-Z)ef(tft )/t dt’
T Jo
+e VT fo(z) (Xi+1/2 — ut) (8)

for component 2, wheng_, 1/» is the location of the cell interface artl= X ;1> — u(t — t’)
is the particle trajectory. There are four unknowns in Eq. (7) and Eq. (8). Two of them
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initial gas distribution functiong(® and f 2 at the beginning of each time steg= 0, and

the others arg¥ andg® in both space and time locally arou] 11,2, t = 0).
Numerically, at the beginning of each time step: 0, we have the macroscopic flow
distributions inside each cel|

Wi = (o1, p2, pU, pV, pE)].

From the discretized initial data, we can apply the standard van Leer lilniter) to
interpolate the conservative variabMé and get the reconstructed initial data

Wi(x) = W + L(S+. S0 (X — %), forx e [Xi_y/2. Xit1/2], 9)

where(W, (x; —1/2), Wi (X +12)) are the reconstructed point-wise values at the cell interfac
Xi—1/2 @andxi 12 in celli.

To simplify the notation, in the following; 1> = 0 is assumed. With the interpolated
macroscopic flow distributiond/;, the initial distribution functiong ” and f{? in Eq. (7)
and Eq. (8) can be constructed as

1+aPx <l), x <0,
fV = (L+a™g (10)
(1+a®Px)g®, x>0,
for component 1 and
1+a7x)g?, x<0,
12 = (1+a7x)g (11)
(1+a@x)g?, x>0,

for component 2. The corresponding macroscopic variables for each component ar
the cell interface are shown in Fig. 1. The equilibrium states in Eq. (7) and Eq. (8) aro
(x =0,t = 0) are assumed to be

g® = (14 @ —HE)a"x + Heoax + APt)gg?, (12)
and
02 = (1+ (L~ He)APx + Hooa?x + AP g2, (13)

where Hx) is the Heaviside functiory$” andg’

at the cell interface,

are the initial equilibrium states located

6 = prolho/m)F e el Ul
’ (14)
92 = pro(ho/m) 7 e Po(U-Uo+v=Vor &)
The parametera;”, ay”, and A®2 are from the Taylor expansion of the equilibrium

states and have the forms

u? + v2 + &3
a{(l,Z) — al(l ,2) + a{(l 2)u + a{(132) al(l Z)f(lz)’

u? 4+ v2 4 &2
ar(lZ) a§12)+ar(12)u+af(12) afiiz) 5 a2
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2 2 2
u?+v2+§&
1,2 1,2 1,2 1,2 1,2 1,2
5|< )=5|(,1)+5|(,2)U+5|(,3)U+5|(,4)f()7

2 2 2

U2+ 02+ ¢
1,2 1,2 1,2 1,2 1,2
at? =a? +au+aPvraly) — 42

2 b
2 2 2
— — — — —1 U+ v+ ¢
AL — AL2 4 A2y 4 A2, 4 ALY - a2
All i i (12 (1,2 A(L2) ;
coefficientsa 1, 3", ..., A;"" arelocal constants. To determine all these unknown

the BGK scheme is summarized as follows.
The equilibrium Maxwellian distribution functions located on the left side of the ce

interfacex; ;1> for components 1 and 2 are

g® = o1 (4 /n)KIT*Ze—xl(<u—ul>2+<v—v|>2+sf)

and

9? = po O /n)KZT*Ze—M (U=U)*+@-V)*+£5) (15)

At the locationx = 0, the relations (3) and (4) require

'(Zl‘i L1,
02, P2,
W, (Xi+1/2) = | (U) = /gfl)qbi dz® + g|(2)¢>§ d2®@ = | (pU) |,
(PV)i (pV))
(PE)i Y2 (PE)
and

PLi+l OLr

P2ji+1 P2,
Wit1(Xi412) = | (00)ia = /gr(l)qbél) dg® 4+ g@¢p@dE@ = | (pU) |,

(PV)is1 (PV);
B/, (pE)r

from which we have

Pl
Pl —
P2
P2, —
u | = Ui
Vi Vi
M (K1 +2)p1i + (K2 +2)p2i

— 1— /172 /2
4((/)E)\ =30 (U] +Vi)) Xit+1/2
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Similarly,
0 /Tl,H-l
1,r —
P2i+1
P2.x —
U, — U_i+1
Vi Vi1
Ar (K1 +2)p1it1+ (K2 +2)p2i41

4((,0_E)i+1 - %EH(J?H-&-\ZZH)) Xis1s2
Thereforeg™, g'?, g, andg? are totally determined.

Sinceg® andg® have the same temperature and velocity at any point in space and ti
as shown in Eq. (5), the parametéas;”, a5, a5”, a';”) are not totally independent.
Sincea’;”, a'4?, anda'’;” depend only on derivatives bk, Vo, andio, the requirement
of common velocity and temperature in space and time gives

_ 0 _ L@ _ D _ L@ _ D _ L@
A=, = aAaz=aq3=a3, and aqs=a,=3a%.

This is also true among the parametafs, a5, ..., a3, a'%

cell interface. Therefore, for each celiwe have

on the right-hand side of a

w1
_ _ .
Wi (Xit12) —Wi(x)
= 0)3
Xit+1/2 — Xi "
ws
u’+v® + €7
= / <a+(,11) +aoutasy+ a,421> gPe® dg®
U +0® +£7
+ (611(,21) +au+a v+ a,422> o?9Pd=?. (16)

The above five equations uniquely determine the five unknc{wﬁé afizl), &2, a3 &.4)
and the solutions are the following: Define

M1 = w3 — Uj(w1 + w2),

[z = w4 — Vi (w1 + w2),
U|2+V|2+ K142 U|2+V|2+ Ky +2

2 2
2(,()1 2(,()2

I3 = ws —

The solutions of Eq. (16) are

82 (T3 — Ui My — ViTlp)

al, == )
YT K+ 211 + (Ko +2)pz)

2% < (p11 + 2.0V )
az=——— (M- =—27"5,),
T oo+ \ G 2\ ¢

2\ < (o1 + p2,)Y >
Qo=———Il1 - —F—aua),
2 011 + P2 ! 2 N
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1 UZ+VZ2 Ky+2
ai(,21)=—<w2—pz,|(U|a|,2+\/|34,3)—pz( ! L4 22 )84,4)

P2, 2 4)L|
1 UZ+V2 Ki+2
1) | | 1
= — — U Vi — .
g 1l <w1 p1(Uia 2 +Via 3) ,01( 5 + ey )31,4)

With the same method, all termsa&i-? terms can be obtained.
By taking the limitof(t — 0) in Eq. (7) and Eq. (8), applying the compatibility condition
at(x = Xiy+1/2,t = 0), and using Egs. (10) and (11), we get

(P10, £2,0, P00, PoVo, poEo)T

— D (1) y=(1 2) (2 4= (2
:/gg>¢;)da”+gg)¢g)da”

. _ 1 - 2 —
=lime v / fo? (Xis1/2 — ut)p® dE® + f§? (X112 — ut)p@ dE®@

= / (Hwg” + @~ Hw)g?)g d&D + (Hwg® + (1 - Hw)g®) ¢ d=®.
(17)

The right-hand side of the above equation can be evaluated explicitlygﬁiﬁgn Eq. (15).

Therefore, 1.0, 2.0, A0, Uo, andVp in EQ. (14) can be obtained by solving Eq. (17). As &

result,gi” andgy’ are determined. Then, connecting the macroscopic variables

Wo = (p1,0, £2,0- PoUo, poVo, poEo) "

at the cell interface with the cell-centered values in Eq. (9) on both sides, we get the sl
for the macroscopic variables,

Wo — Wi (Xi)’ and Wit1(Xi+1) — Wo’
Xit1/2 — Xi Xi+1 — Xi+1/2

from whicha™ anda® in Eq. (12) and&? anda® in Eq. (13) can be determined using
the same techniques for solving Eq. (16). At this point, there are only two unknalRs
left for the time evolution parts of the gas distribution functions in Eq. (12) and Eq. (13)

Substituting Eq. (10), Eq. (11), Eq. (12), and Eq. (13) into the integral solutions Eq. (7) ¢
Eq. (8), we get

fO (X1t U0, 8) = (L—e V7)ol +o(t/r — 1+ eV ) AbgP
+(t(=1+ V) +te7) (3P Hw) + a1 — H(u)))ug)”
+e7/7((1 - utg”)Huwg” + (1 - uta®) 1 — Hupg™®),
(18)

and

f@(Xit12, t U0, &) = (1—eV)g? +(t/t — 1+ e ) APgP
+(r(~1+eV7) +te V") (@7 H[u] + &2 (1 - H(u)))ug?
+e " ((1—uta®)Hwg® + (1 - utg®) (1 — H(u))g?).
(19)
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To evaluate the unknown&®2 in the above two equations, we can use the compatibilit
condition at the cell interfacg 1/> over the whole CFL time stefxt,

/At/(gm _f)p® dE® dt 1 (g? — )@ dE? dt = 0
0

from which we can get
DAL 1) 42 2) A2 2) 4= (2
/g{)>A<)¢fx>da”+g(§)A”¢(§>da”

2
+ 02+
/ (A“) AU+ Ao+ At L & ) g ¢ dE®

2
+ v+
(A(Z) + AU+ Ago + A472 & ) 02¢? dz@

/ [1105” + v2u (@ HW +a® @ - Hw))gs” + ya(Hwg™ + 1 —Hu)g®)

+rau(a”HWg™ + 8 (L - HW)g™)|¢t" dE® + [1185” + r2u(aPHW)
+a?(1—Hu))gy + y3(HWg? + (L — Hu)G?) + yau(a®Hu)g?
+a®(1 - Hu)g?)]¢P? dE?, (20)

where

yo=At—1(1- eﬁAl/T),

yi=—(1— ey,

yo = —At+2t(1—e ") — Ate™?V7,
ys = (1—e 87y,

and
V4 = —r(l — e’At/T) + Ate AT,

The right-hand side of Eqg. (20) is known; therefore all paramete;tg“iﬁ) terms can be
obtained explicitly.

Finally the time-dependent numerical fluxes for component 1 and component 2 g:
across a cell interface can be obtained by taking the moments of the individual gas d
bution functionsf @ and f @ in Eq. (18) and Eq. (19) separately, which are

1 1 ~(1
fplul = /Uqb‘i ) f( )(Xi+1/2, t,u, v, ‘51) dd( ),

i+1/2
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and

0

‘sz
fszz = /U¢éz) f @ (Xi+1/2, t,u, v, 52) dE(Z).
fpzvz
F:Er i+1/2

Integrating the above time-dependent flux functions in a whole timestegve can get
the total mass, momentum, and energy transports for each component, from which the
variables in each cell can be updated.

In comparison with traditional central schemes and popular Riemann solvers, the €
uation of the gas distributions in Egs. (18) and (19) is relatively expensive. However, b
the viscous effect and the coupling of the spatial and temporal gas evolution are inclt
in these distribution functions. Therefore, in a certain sense, the BGK method gives an
accurate representation of the flow motion under a more generalized initial condition,
the inclusion of slopes at the left- and right-hand sides of a cell interface; see Fig. 1. If
inviscid flux functions are required, the distribution functions can be simplified to

FO (X172t U,0,8) = (1—e7)gg” + e/ (Hwg™ + (1 - Hupg™?),
and
f@ (Xip12, tu v, &) = (1—e7) gl + eV (Hwg® + (1 - Hu)g?).

This simplified formulation has been applied to the MHD simulation [37].

2.2. Reaction Step and Flow Update

After obtaining the flux functions across a cell interface, we need to solve an ODE
account for the source term, i.&\; = S. More specifically, inside each cell we need to
solve

(ot = —K(T)p1,
(p2)t = K(T)p1, (21)
(pE)t = KQpp1.

In the current study, one step forward-Euler method is used to solve the above equatic
In summary, the update of the flow variables inside ¢elj) from stepnton+ 1 is
through the formulation

1 At
Wn+1=Wn-+7 Ay/ Fi_192i — Fi12)dt
i ij AV 0 ( i-1/2,j i+1/ ,J)

At
—l—AX/ (Gi,j-12 — Gi,j+1/2) dt> + AtSj,
0

where§ ; is the corresponding source termin gellj ), F andG are numerical fluxes across
cell interfaces by solving the multicomponent BGK equations, ANMdis the area of the
cell (i, j). We have also tried a second-order Runge—Kutta time stepping method to up
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the source term. It is observed that there is basically no difference in the simulation re:
between using first- and second-order time stepping schemes for the test cases presel
the next section.

3. NUMERICAL EXAMPLES

In this section, we test the multicomponent BGK scheme for both nonreactive and reac
flows. For the viscous calculations, the collision timén the BGK scheme presented in
the last section is set to be

T =u/P,

whereu is the dynamical viscosity coefficient aridlis the total local pressure. For the
viscous flow,u is a fixed number. In the mesh-refinement study of the viscous flow c
culation, the simulation results can be convergent only after the physical viscosity tak
dominant role and the physical structure can be well resolved by the mesh size. The
vergence study of the BGK scheme for the Rayleigh—Taylor case is presented in [19].
kinetic BGK method is actually a mesoscopic model rather than a microscopic model
the flow description. The collision time cannot take the real particle collision time, suct
as 10 s for the molecular collisions in the air, because it is impossible to get such a refi
mesh size and time step to resolve individual particle collision. In the BGK scheme
the Navier—Stokes solution, the collision time is solely determined from the macroscc
viscosity coefficient.

For the inviscid flow calculations, the collision time is defined as

IR — P
7 = 0.05At + PP At,

whereAt is the CFL time step, anfy and P are the corresponding pressure in the state
g andg; of the initial gas distribution functiorfiy. With the above definition, the numerical
dissipation will be reduced along with the mesh refinement. In the smooth flow regi
the above expression gives about 20 collisions inside each time step. In other words
magnitude of corresponding numerical diffusion is aboitQLof that in the kinetic flux
vector splitting (KFVS) scheme [23, 26, 34]. In the discontinuous region, the collision tir
will be close to the time step in order to provide enough dissipation to construct a numel
discontinuity jump. Whatever the collision time, numerical dissipation always exist in t
BGK scheme and is consistent with the Navier—Stokes dissipative terms. In other wc
the BGK scheme gives an approximate solution under the generalized initial condi
(Fig. 1) for the viscous governing equations, and the viscosity coefficient is controlled
the particle collision pseudo-time. Starting from the Godunov method, it is equivalen
construct a generalized Riemann solution for the viscous governing equations. Also
current approach is more robust than the previous “single component” kinetic methoc
the reactive flows [19]. The detail comparison is given in [18].

For the chemical reactive flow, if the flow structure is not well resolved by the me
size, the current BGK scheme cannot get grid-independent solutions. It is true for any c
shock capturing scheme applied to the reactive flows. As realized by Lindstorm [22]
obtain grid-independent solutions, a large amount of physical viscosity must be adde
the flow simulations. The BGK scheme does it through the inclusion of large collision tir
such as the case (5) in the reactive flow calculation section.
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FIG. 2. Physical domain for shock—bubble interaction.

3.1. Nonreactive Multimaterial Flow Calculations

In this section, we show two cases of shock—bubble interactions. The main differer
between these two cases are the specific heat ratios and the initial gas densities insic
bubble with respect to the density of the outside air. The density difference yields differ
flow patterns around the material interface after its interaction with the shock.

Case (1): A M =1.22 shock wave in air hits a helium cylindrical bubbl&Ve examine
the interaction of s = 1.22 planar shock wave, moving in the air, with a cylindrical heliun
bubble. Experimental data can be found in [16] and numerical solutions using adaptive n
refinement have been reported in [28]. Recently, a ghost fluid method has been applie
this case too [11]. A schematic description of the computational setup is shown in Fig
where reflection boundary conditions are used on the upper and lower boundaries. Thei
flow distribution is determined from the standard shock relation with the given strengtt
the incident shock wave. The bubble is assumed to be in both thermal and mecha
equilibrium with the surrounding air. The nondimensionalized initial conditions are

W=(p=1L,U=0,V=0,P=1y =14 preshockair
W= (0=13764U = —-0.394V =0, P = 15698 y = 1.4) postshock air
W= (p=01358U =0,V=0,P=1y =167 helium

The nondimensional cell size used in the computatiomis= Ay = 0.25.

To identify weak flow features which are often lost within contour plots, we presen
number of numerical Schlieren images. These pictures depict the magnitude of the gra

of the density field
ap 2 ap 2
Ap| = — — 22
o \/<ax) +(a5) 2

and hence they may be viewed as idealized images; the darker the image, the large
gradient. The density derivatives are computed using straightforward central-differenc
The following nonlinear shading functighis used to accentuate weak flow features [28]

A
= oo Hiapie) @

wherek is a constant which takes the value 10 for helium and 60 for air. For the Refriger
22 (R22) simulation in the next test case, we use 1 for heavy fluid and 80 for air.



KINETIC SCHEME FOR REACTIVE FLOW 363

T T T T T T
15 . -
. ‘l. r e
] S— .- ]
..% M
0.5 & (a) .
0 1 I v’ﬁ 1 1 ! 1
0 50 100 150 200 250 300
X
1 1 ) ) ] i
0.3} .
0.2f .
a .j“
0.1} v (b) .
0 i\
01 I I ! 1 ! 1
50 100 150 200 250 300
X
1 T T T T T
155 \ 4
. _I. ’ Rapme V-
~ D
[ S—— .
(=N N .
0.5F ": o 4
w {c)
13
0 1 1 1 1 | 1
0 50 100 150 200 250 300

X

FIG. 4. The density profiles along the centerline for the shock-Helium interaction case att #1250.
(a) Density of air, (b) density of Helium, and (c) total density.

Figure 3 shows snapshots of numerical Schlieren-type images at nondimensional t
t = 0.0 andt = 1250. Before the shock hits the bubble, wiggles usually appear around
bubble because the numerical scheme cannot precisely keep the sharp material inte
The wiggles spread in all directions. When they reach the solid wall, they bounce back.
all these noises have a very small magnitude. After the shock hits the bubble, the oric
shock wave separates into a reflected and a transmitted shock wave. A complex patte
discontinuities has formed around the top and bottom of the bubble. Figure 4 shows
density distributions around the central line at time 1250. There are approximately
10 points around the material interface, which is much wider than those obtained fi
schemes with special treatment at the material interfaces [11, 21]. In other words,
kinetic scheme always has an intrinsic dissipative term, and it is impossible to keep a
sharp interface. A similar phenomenon takes place in the 1D case [1]. Since helium
a lower density than air, any small perturbation at the material interface can be ampli
to form the interface instability. This instability at the material interface is closely relat
to the Richtmyer—Meshkov instability. In comparison with the result in [11], the curre
scheme could capture the unstable interface structure automatically, and the result h
qualitatively consistent with both the experiment and that from the mesh-refinement st
[28]. It is a common practice that many schemes with special treatments at the mat
interface could easily remove the interface instability. So, it is an interesting problen
further study the shock—bubble interaction case and to understand the dynamics o
special numerical treatment on the interface stability. In our calculations, the stable
unstable interfaces are captured automatically.
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FIG. 3. Numerical Schlieren images of the interaction betweévi;a= 1.22 shock wave in the air and a
helium cylindrical bubble. The shock is moving from right to left. The second image describes the fields of
density gradient distribution at tinte= 1250, where the red corresponds to one material and the blue to anot

FIG.5. Numerical Schlierenimages of the interaction betwebh & 1.22 shock wave and a R22 cylindrical
bubble. The second image describes the fields of the density gradient distributionta&tifr&0.0, where the red
color represents one material and the blue color another one.
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Case (2): A M =1.22 shock wave hits a R22 cylindrical bubbl&Vith the same scheme,
we investigate the interaction o, = 1.22 planar shock wave moving in the air impinging
upon a R22 cylindrical bubble. The main difference between this case and the previous
is that the density of the bubble here is much heavier than the density of air. The initial ¢
are

W=(p=1,U=0,V=0P=1y=14) preshock air
W= (p=13764U = —-0394V =0, P = 15698 y = 1.4) postshock air
W= (p=31538U =0,V =0,P=1y =1249 R22

In the numerical experiment we ugex = Ay = 0.25. Figure 5 shows two snapshots of
numerical Schlieren-type images at nondimensional time$.0 andt = 150.0. Figure 6
presents the density distributions along the symmetric line. Due to the higher densit
the bubble region, the material interface in this case is basically stable. Again, this resi
qualitatively consistent with our physical understanding.

3.2. Reactive Flow Calculations

The study of detonation waves has been undertaken theoretically and computationall
over a century. The successful theory of Zel'dovich, von Neumann, and Doering has ¢
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FIG. 6. The density profiles along the centerline for the shock—R22 interaction case at #m&00.
(a) Density of air, (b) density of R22, and (c) total density.



366 LIAN AND XU

to be a standard model. The ZND solution for the reacting compressing Euler equatiol
described in [13]. It consists of a nonreactive shock followed by a reaction zone; both
shock and the reaction zone travel at a constant speddiven the specific heat ratip
and the heat relea$®y, there is a minimum shock speed, the so-called Chapman—-Joug
value, D¢3, above which the ZND solution can be constructed.

The parameter that relates the shock spg2efla given detonation wave to the CJ velocity
Dc; is the overdrive factoff , which is defined as

D 2
f= (o_m) . (24)

The value off is one of the factors that determine the stability of the detonative front.

Inthe following test cases, we only consider reactive flows with two species, i.e., areac
and a product. The reactant is converted to the product by a one-step irreversible rea
rule governed by Arrhenius kinetics. The fact(T ), which depends on the temperature,
is given by

K(T) = KoT%e E7/T,

whereKg is a positive constant anl™ is the activation energy. In the current paper, we
assume tha& = 0 and the gas constaf is normalized to unity. Therefore, the above
temperaturdl is determined byl = P/p.

One important parameter in the numerical calculation of ZND solution is the half-react
length L5, which is defined as the distance for half-completion of the reactant starti
from the shock front. Usually the reaction prefadayis selected so that the half-reaction
length is unity. From the Arrhenius formula, the half-reaction length is defined as

1/2 D—-U
L1/2 = dZa (25)
. KoZ exp(—E+/T)

whereD is the speed of the shock, abidis the postshock flow speed.
In the output of numerical results, the mass fracttois defined as

_ P1
o1+ p2

Case (1): 1-D stable ZND detonatiop:= 1.2, @y= 50, E* = 50.0, f= 1.8. Thistest
caseisfrom|[3]. The preshock state is normalizelete- po = 1 and velocityJy = Vo = 0,
and the postshock can be obtained using the Chapman-Jouguet condition. The pifgfact
is chosen to b&y = 14568913 so that the length of the half-reaction zéng is unity.
This case corresponds to the stable ZND profile. The results with 10, 20, and 40lpgints/
are shown in Figs. 7 and 8.

Case (2): 1-D unstable detonatiop:= 1.2, @ = 50, Et = 50, f= 1.6. To obtain
a high-quality simulation result for the unstable overdriven detonation, a high-resolut
solution is usually required to resolve the instability. At the same time, the correct captur
of oscillatory period requires a large computational domain. As pointed out in [17], fo
particular computation, one may be tempted to keep only a few points behind the shi
with the reasoning that the information behind the shock either never catches up witl
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does not affect the shock during the computation. However, if too small a computatic
domain behind the shock is specified, the points at the edge of and outside the computa
domain cease to be updated after some time, leading to corruption of the data in that re:
TheU + c waves emanating from an inappropriate boundary condition eventually catch
with the shock itself and alter the shock properties erroneously. The analysis in [17] sh
that if one expects the numerical results at time be correct, the computational domain
L andt must satisfy the inequality

L L

t N 7’
“U+c-D'D

(26)
whereU is the speed of the postshock flow, ani$ the sound speed. For the current test
L should satisfy

L > 1.88t.

This classical unstable detonation wave was first studied by Fickett and Wood [14].
important physical quality for unstable detonation is the pressure history at the precu
shock in the oscillatory ZND wave as a function of time. For a stable ZND wave, tt
shock pressure history should exhibit small fluctuations about the known precursor st
value and decay as time evolves. In the case of unstable detonations, the shock front
sure history makes larger excursions from the ZND value. For theycasé.2, qo = 50,
E* = 50, and overdrivéd = 1.6, according to Erpenbeck [10] this ZND profile is a regula
periodic pulsating detonation with a maximum shock pressure given hy #0.2 while
the unperturbed ZND shock pressure is 67.3.

In the current study, the density and pressure are normalized to unity after the shock. &
Qo =50, y = 1.2, the CJ speed becomBg; = 6.80947, and the prefactor is chosen to be
Ko = 230.75to get a unit half-reaction length. The postshock state can be determined by
Chapman-Jouguet condition with the given shock speed. Due to the “start-up” numel
incompatibility, there is a large initial shock pressure up to 114 at timgual to 8; see
Fig. 9. Aftert > 15, the motion of the shock front becomes periodic.

In this test, we observe that at least 20 pointg/ are needed for a correct unstable
ZND solution. In Figs. 9 and 10 we show the numerical results with 20 paigptsand
40 pointsL 1», respectively. At the same time, the result with 80 poinig/ is given as a
reference. In Table I, the data of local maximum and minimum pressure as a functiol
time are listed.

Case (3): Weak shock wave hitting the reactarifo validate the multicomponent BGK
scheme, we design the following 1D case to simulate the chemical reaction in which
reactant and product have different specific heat ratioBhe initial condition is

WL = (oL, UL, P, y) = (2.667,1.479 4500 1.4) postshock air
Wwu = (om, Um, Pu, ym) = (1.0,0.0, 1.0, 1.4) preshock air
Wgr = (pr, Ur, Pr, yr) = (0.287,0.0, 1.0, 1.2) (reactant)

This is a case of aweak shock wave with= 2.0 hitting the reactant. We use the Arrhenius
form for the reaction rate witlke™ = Qg = 50 andKy = 600.0. The numerical cell size is
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TABLE |
Maximum and Minimum Pressure vs Time for f = 1.6 and 80Ly»

Time Maximum Time Minimum

7.3513 114.1553 11.8038 60.1576
15.9353 85.0627 18.9221 56.7383
23.3201 98.1318 26.3057 56.7478
30.7833 98.3344 33.6993 56.8976
38.1373 97.8645 41.1103 56.7854
45.6102 98.0387 48.6158 56.5972
53.1075 98.8378 56.0587 56.8738
60.5059 98.1242 63.4607 56.9737
67.9318 97.3600 70.8918 56.6064
75.4233 98.6184 78.3885 56.6841
82.8773 98.7023 85.8014 57.0227
90.2201 97.3901 93.2212 56.7298
97.6928 98.2211

Ax = 1/2000. Figure 11 shows the numerical results at time0.20. Since the shock is too
weak to construct a ZND wave, the solution is the same as the shock hits the nonreactive
component flow interface. There is a transmitted shock moving forward and a rarefac
wave moving backward.
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FIG. 11. Weak shock waveNl = 2.0) in the air { = 1.4) hits the reactant gag (= 1.2). The cell size is
AX = 1/2000. The reaction ha&* = Q, = 50, andK, = 600.0 (CFL = 0.5).
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FIG. 12. Strong shock wavel] = 8.00) in the air { = 1.4) hits the reactant gag (= 1.2). The cell size is
AX = 1/2000. The reaction has™ = Q, = 50.0, andK, = 6000 (CFL = 0.5).

Case (4): Strong shock wave hitting the reactani/e increase the strength of the shocl
in Case (3) up taM = 8.0. The initial condition is

WL = (oL, U, P, y) = (5,565 7.765 74.50, 1.4) postshock air
Wwm = (om, Um, Pu, ym) = (1.0,0.0, 1.0, 1.4) preshock air
Wg = (pr, Ug, Pr, yr) = (0.287,0.0, 1.0, 1.2) (reactant)

Figure 12 shows the numerical results at time 0.05. From the figure, we observe that
after the shock hits the reactant, a ZND solution is obtained.

Case (5): Viscous reactive flowThis case is from [22]. The initial data is a one-
dimensional ZND profile in thex direction. The ZND wave connects the left state=
1.731379,U; = 3.015113,V, =0, p E; = 1304736 by a Chapman—Jouguet detonatiol
with theright statep, = 1, U; = 0, Vg = 0, o E; = 15. If no transverse gradient is present
in the initial data, the numerical scheme will preserve the one-dimensional ZND prof
Thus, a periodic perturbation is imposed in thdirection in the initial ZND profile, where
the initial dataW(x, y, 0) is set toWznp(X + AxNINT(%’ cog4ny))), where NINT(2)
is the nearest integer to

The current test ha®, = E* = 50,y = 1.2. The reaction rat& is set to be 18 The
coefficient of dynamical viscosity is set to 10*. With the above choice of parameters,
the half-reaction length, of the inviscid one-dimensional Chapman-Jouguet detonati
wave is equal to 0.0285. In our computatidty = Ay = 8—(1)0 is used. Therefore, there are
about 23 pointd/; 5.
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FIG.15. Sequence of 10 snapshots of temperature distributions starting fromfmgéwith atimeincrement

of 916 whereQy = E* =50,y = 1.2, AX = Ay = 8—30, and 23 pointd/,,,. Shock moves from left to right.
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Based on the analysis in [17], to obtain an accurate solution it is sufficient to us
computational domair € [0, 1.2]. At the left and the right boundary, we prescribe the lef
and right state of the initial traveling wave solution. At the lower and upper boundari
periodic boundary conditions are used.

Figure 13 shows a sequence of snapshots of the density distributions starting fron
timet = 0.0. Figure 14 is the snapshot of pressure at later times when the shock front
a regular periodic oscillating profile. The first picture is takeh até—g, which is just after
the collision of two triple points. This figure clearly shows the formation of a Mach stel
In the next few snapshots, the movement of triple points along the transverse shock frc
clearly captured. A high-pressure spot develops at the location of triple-point intersect
Figure 15 shows the snapshots of the temperature variations. More figures, such as the
fraction and vorticity, are included in [18].

4. CONCLUSION

In this paper, we have successfully extended the BGK-type gas-kinetic scheme to |
tidimensional reactive flows. Since each component of the flow is captured individuz
mass conservation is preserved for each component in nonreactive multimaterial flow
culations. For reactive flows, the mass exchange between different components an
energy release have been implemented in the current kinetic method. Many numerica
cases validate the current approach in the description of multimaterial and reactive fl
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For example, the unstable and stable material interfaces are captured automatically i
shock—bubble interaction cases.

The success of the kinetic method for the compressible fluid simulation is due to its «
sipative mechanism. In the region with smooth flow, the dissipation in the kinetic metho
consistent with the Navier—Stokes dissipative term, and the viscosity coefficientis contro
by the collision time. In the unresolved discontinuous region, the BGK scheme still sol
the viscous governing equations under the generalized initial condition shown in Fig. 1.
believe that the Godunov method can achieve the same goal once the generalized Rie
solution and explicit viscous fluxes are both implemented in the flow solver. In comparis
with Riemann solvers, the advantage of kinetic approaches is probably in their flexibility
the implementation of physics and straightforward construction of numerical fluxes. Furt
investigation to evaluate and compare the Godunov method and the gas-kinetic schen
warranted.
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